Improvement Strategies for Multi-swarm PSO in Dynamic Environments

نویسندگان

  • Pavel Novoa-Hernández
  • David A. Pelta
  • Carlos Cruz Corona
چکیده

Many real world optimization problems are dynamic, meaning that their optimal solutions are time-varying. In recent years, an effective approach to address these problems has been the multi-swarm PSO (mPSO). Despite this, we believe that there is still room for improvement and, in this contribution we propose two simple strategies to increase the effectiveness of mPSO. The first one faces the diversity loss in the swarm after an environment change; while the second one increases the efficiency through stopping swarms showing a bad behavior. From the experiments performed on the Moving Peaks Benchmark, we have confirmed the benefits of our strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-swarm Optimization in Dynamic Environments

Many real-world problems are dynamic, requiring an optimization algorithm which is able to continuously track a changing optimum over time. In this paper, we present new variants of Particle Swarm Optimization (PSO) specifically designed to work well in dynamic environments. The main idea is to extend the single population PSO and Charged Particle Swarm Optimization (CPSO) methods by constructi...

متن کامل

Multi-dimensional particle swarm optimization in dynamic environments

Particle swarm optimization (PSO) has been initially proposed as an optimization technique for static environments; however, many real problems are dynamic, meaning that the environment and the characteristics of the global optimum can change in time. Thanks to its stochastic and population based nature, PSO may avoid becoming trapped in local optima and find the global optimum. However, this i...

متن کامل

Dynamic Multi-swarm Particle Swarm Optimization with Fractional Global Best Formation

Particle swarm optimization (PSO) has been initially proposed as an optimization technique for static environments; however, many real problems are dynamic, meaning that the environment and the characteristics of the global optimum can change over time. Thanks to its stochastic and population based nature, PSO can avoid being trapped in local optima and find the global optimum. However, this is...

متن کامل

Particle swarm optimization in stationary and dynamic environments

Inspired by social behavior of bird flocking or fish schooling, Eberhart and Kennedy first developed the particle swarm optimization (PSO) algorithm in 1995. PSO, as a branch of evolutionary computation, has been successfully applied in many research and application areas in the past several years, e.g., global optimization, artificial neural network training, and fuzzy system control, etc.. Es...

متن کامل

Multiple Route Generation Using Simulated Niche Based Particle Swarm Optimization

This research presents an optimization technique for multiple routes generation using simulated niche based particle swarm optimization for dynamic online route planning, optimization of the routes and proved to be an effective technique. It effectively deals with route planning in dynamic and unknown environments cluttered with obstacles and objects. A simulated niche based particle swarm opti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010